quarta-feira, 25 de março de 2020

ERCEIRA QUANTIZAÇÃO E UNIFICAÇÃO GERAL PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




massa de repouso do elétron (símbolo: me) é a massa de um elétron estacionário. É uma das constantes fundamentais da física e também é muito importante na química por causa de sua relação com a Constante de Avogadro. Tem um valor de cerca de 9.11×10−31 quilogramas ou cerca de 5.486×10−4 Unidade de massa atômicaequivalente para uma energia de cerca de 8.19×10−14 joules ou cerca de 0.511 megaeletrônomos.[1]

Terminologia[editar | editar código-fonte]

O termo "massa de repouso" + energia cinética vem da necessidade de levar em conta os efeitos da relatividade especial sobre a massa aparente (ou "observada") de um elétron. É impossível "pesar" um elétron estacionário, e assim todas as medidas práticas devem ser realizadas em elétrons em movimento. O mesmo acontece com qualquer outra partícula subatômica. Para partículas como fótons ou glúons, a situação é ainda mais problemática, uma vez que o próprio conceito de uma partícula sem massa estacionária ou "em repouso" carece de significado.

Determinação[editar | editar código-fonte]

A massa de repouso do elétron em quilogramas é calculada a partir da definição da Constante de Rydberg R:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde α é a constante de estrutura fina e h é a Constante de Planck.[1] A relativa incerteza, 5×10−8 no valor recomendado do CODATA 2006,[2] é devido inteiramente à incerteza no valor da constante de Planck.
A massa atômica relativa do elétron pode ser medido diretamente em um Penning trap. Também pode ser deduzido a partir dos espectros de átomos de hélio antiprotônico (átomos de hélio) onde um dos elétrons foi substituído por um antipróton ou por medidas do elétron fator-g nos íons hidrogenóides 12C5+ ou 16O7+. O valor recomendado de 2006 CODATA tem uma relativa incerteza de 4.2×10−10.[1]
A massa atômica relativa de elétrons é um parâmetro ajustado no conjunto CODATA de constantes físicas fundamentais, enquanto a massa de descanso de elétrons em quilogramas é calculada a partir dos valores da constante de Planck, a constante de estrutura fina e a constante de Rydberg.[1] A correlação entre os dois valores é insignificante (r = 0.0003).[2]

Relação com outras constantes físicas[editar | editar código-fonte]

Conforme mencionado acima, a massa de elétrons é usada para calcular a Constante de Avogadro NA:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Portanto, ele também está relacionado com a Constante de massa atômica mu:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde Mu é Constante de massa molar (definida em SI) e Ar(e) é uma quantidade diretamente medida, a massa relativa de elétrons]].
Note que mu é definida em termos de Ar(e), e não o contrário, e assim o nome "massa de elétrons em unidades de massa atômica" para "Ar(e) envolve uma definição circular (pelo menos em termos de medidas práticas).
A massa atômica relativa do elétron também entra no cálculo de todas as outras massas atômicas relativas. Por convenção, massas atômicas relativas são citadas para átomos neutros, mas as medidas reais são feitas em ions, quer num espectrômetro de massa ou um Penning trap. Portanto, a massa dos elétrons deve ser adicionada de volta aos valores medidos antes da tabulação.Deve ser feita uma correção para o equivalente em massa da energia de ligação Eb. Tomando o caso mais simples de ionização completa de todos os elétrons, para um nuclídeo X de número atômico Z,[1]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



Como as massas atômicas relativas são medidas como proporções de massas, as correções devem ser aplicadas a ambos os íons: felizmente, as incertezas nas correções são desprezíveis, como ilustrado abaixo para hidrogênio 1 e oxigênio 16.
 1H16O
massa atômica relativa do XZ+ ion1.007 276 466 77(10)15.990 528 174 45(18)
massa atômica relativa do Z electrons0.000 548 579 909 43(23)0.004 388 639 2754(18)
correção para a energia de ligação−0.000 000 014 5985−0.000 002 194 1559
massa atómica relativa do átomo neutro1.007 825 032 07(10)15.994 914 619 57(18)
O princípio pode ser demonstrado pela determinação da massa atômica relativa dos elétrons por Farnham et al. na Universidade de Washington (1995).[3] Envolve a medição das frequências da radiação ciclotrônica emitida por elétrons e por íons 12C6+ + em uma armadilha de Penning. A proporção das duas frequências é igual a seis vezes a razão inversa das massas das duas partículas (quanto mais pesada a partícula, menor a frequência da radiação do ciclotron, quanto maior a carga na partícula, maior a frequência):
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



Como a massa atômica relativa de 12C6+ ions é muito próxima de 12, a relação de frequências pode ser usada para calcular uma primeira aproximação a Ar(e), 5.486 303 7178×10−4.Este valor aproximado é então usado para calcular uma primeira aproximação a "Ar(12C6+), sabendo que Eb(12C)/muc2 (a partir da soma das seis energias de ionização do carbono) é 1.105 8674×10−6Ar(12C6+) ≈ 11.996 708 723 6367Este valor é então usado para calcular uma nova aproximação para Ar(e), e o processo repetido até que os valores já não variam (dada a incerteza relativa da medida, 2.1×10−9): isso acontece no quarto ciclo de iterações para esses resultados, dando "Ar(e) = 5.485 799 111(12)×10−4 para esses dados.



lei de Wiedemann-Franz afirma que a contribuição eletrônica para a condutividade térmica  e condutividade elétrica  de um metal é proporcional a temperatura. Esta é uma lei empírica definida por Gustav Wiedemann e Rudolph Franz em 1853,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Somente em 1872 o físico dinamarquês Ludvig Lorenz determinou a constante de proporcionalidade . Essa constante é idêntica para todos os metais e é conhecida como número de Lorenz
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A interligação entre a condutividade elétrica e a condutividade térmica é explicada pelo fato de que ambas as propriedades nos metais são consequência principal do movimento dos elétrons condutores. A lei Wiedemann-Franz foi explicada pela primeira vez pelo físico alemão P. Drude, que considerada em seu modelo que os elétrons do metal se comportavam como um gás de elétrons. No entanto, somente com o auxílio da mecânica quântica e da equação de Boltzmann, que a expressão exata para essa lei e o valor de  foram obtidos, e estavam de comum acordo com os dados experimentais. Experimentos mostram que o valor de , apesar de aproximadamente constante, não tem o mesmo valor para todos os sólidos. Kittel [2] apresenta alguns valores de  entre  para o cobre a 0 °C e  para o tungstênio a 100 °C. Rosenberg [3] observou que a lei Wiedemann-Franz geralmente é válida para altas e baixas temperaturas, mas não funciona bem para temperaturas intermediárias.




Em física estatística e física da matéria condensadadensidade de estados (DOS, do inglês density of states) é a propriedade que quantifica quão proximamente "empacotado" em níveis de energia está um sistema mecânico quântico. Um DOS alto em um nível específico de energia significa que há muitos estados disponíveis para ocupação. Um DOS nulo, zero, significa que nenhum estado pode ser ocupado em um nível de energia.

Explanação[editar | editar código-fonte]

Ondas, partículas comportando-se como ondas, podem somente existir dentro de sistemas mecânico quânticos (MQ) se propriedades do sistema seguem a ondulação existente. Em alguns sistemas, o espaçamento interatômico e a carga atômica do material segue somente elétrons de certos comprimento de onda existentes. Em outros sistemas. a estrutura cristalina do material leva ondas a se propagar em somente uma direção, enquanto suprime a propagação de ondas em outra direção. Ondas em um sistema MQ tem comprimentos de onda específicos e podem propagar-se em direções específicas, e cada onda ocupa um diferente modo,ou estado. Devido a muitos destes estados terem o mesmos comprimentos de onda, entretanto dividirem a mesma energia, podem existir muitos estados disponíveis em certos níveis de energia, enquanto nenhum estado é disponível em outros níveis de energia.
Por exemplo, a densidade de estados para elétrons em um semicondutor é mostrada em vermelho na Fig. 2. Para elétrons na fronteira da faixa de condução, muito poucos estados estão disponíveis para o elétron ocupar. A medida que o elétron aumenta em energia, a densidade de estados do elétron aumenta e mais estados tornam-se disponíveis para ocupação. Entretanto, porque não há estados disponíveis para elétrons ocuparem dentro da faixa de abertura, elétrons na fronteira da faixa de condução devem perder pelo menos  de energia de maneira a realizarem a transição a outro estado disponível.
A densidade de estados pode ser calculada para elétronsfótons, ou fónons em sistemas MQ. É usualmente notado com um dos símbolos gn, ou N. É uma função g(E) da energia interna E, na qual a expressão g(E) dE representa o número de estado com energias entre E e E+dE.
Para converter entre energia e vetor de onda, a relação específica entre E e k deve ser conhecida. Por exemplo, a fórmula para elétrons é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


E para fótons, a fórmula é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



Pode também ser escrito como uma função da frequência angular , a qual é proporcional à energia. A densidade de estados é usada extensivamente em física da matéria condensada, onde pode referir-se ao nível de energia dos elétronsfótons ou fônons em um sólido cristalino. Em sólidos cristalinos, há frequentemente níveis de energia onde a densidade dos estados dos elétrons é zero, o que significa que os elétrons não podem ser excitados a estas energias. A densidade dos estados também ocorre na regra dourada de Fermi, a qual descreve quão rápido as transições mecânico quânticas ocorrem na presença de uma perturbação.
Num sistema tridimensional, a densidade de estados em espaço recíproco (espaço k) é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde V é o volume e n o número de pontos de ramificação que existem para um único valor de k. Estes pontos de ramificação são por exemplo o spin-acima e spin-abaixo estados para elétrons, as polarizações de fótons, e os modos longitudinais ou transversais para fônons.

Materiais cristalinos[editar | editar código-fonte]

Dado que em materiais (cristalinos), o número de escalas varia linearmente com o volume, uma diferente definição de densidade de estados é algumas vezes usada, na qual g(E) ou g(k) é o número de estados por unidade de energia (vetor onda) e por unidade de volume ou por unidade de célula da grade.
Em um material cristalino, onde os estados mecânico quânticos podem ser descritos em termos de seus vetores de onda k, a densidade dos estados como uma função de k é não dependente das propriedades do material. Das condições periódicas segue que em um volume arbitrário , somente vetores k são mantidos satisfazendo
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

onde  são inteiros positivos ou negativos arbitrários. Usando
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



pode ser derivado que para uma matriz tridimensional o número de estados G(k) dk entre k e k+dk é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


para um único caso.
Em sólidos, a relação entre E e k é geralmente muito complexa e dependente do material. Se a relação é conhecida, a expressão para a densidade dos estados é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A relação acima é somente significativa se a energia somente depende da manitude  do vetor k.




Efeito termiônico é o aumento do fluxo de elétrons que saem de um metal, devido ao aumento de temperatura. Ao aumentar-se substancialmente a temperatura do metal, há uma facilidade maior para a saída dos elétrons.
O fenômeno for inicialmente descrito em 1873 por Frederick Guthrie na Inglaterra enquanto trabalhava em experimentos com objetos carregados. Ele notou comportamentos diferenciados para esferas de metal carregadas com temperaturas muito elevadas, relativo a sua descarga.
O efeito termiônico foi acidentalmente redescoberto por Thomas Edison em 1880, enquanto tentava descobrir a razão para a ruptura de filamentos da lâmpada incandescente.
Edison construiu um bulbo com a superfície interior coberta com uma folha de metal. Conectou a folha ao filamento da lâmpada com um galvanômetro. Quando na folha foi dada uma carga mais negativa do que a do filamento, nenhuma corrente fluiu entre a folha e o filamento porque a folha fria emitiu poucos elétrons. Entretanto, quando na folha foi dada uma carga mais positiva do que a do filamento, muitos elétrons emissores do filamento quente foram atraídos à folha, fazendo com que a corrente fluisse. Este fluxo de sentido único da corrente foi chamado de efeito Edison. Edison não viu nenhum uso para este efeito, embora o patenteasse em 1883.
O físico britânico John Ambrose Fleming, descobriu que o efeito poderia ser usado para detectar ondas de rádio. Fleming trabalhou no desenvolvimento de um tubo de vácuo de dois elementos, conhecido como diodo. Owen Willans Richardson trabalhou com emissão termiônica e recebeu o prêmio Nobel em 1928 em função de seu trabalho e da lei que leva seu nome, a lei de Richardson. Em todo o metal, há um ou dois elétrons por átomo que estão livres para moverem-se de um átomo para outro. Suas velocidades seguem uma distribuição estatística, melhor que ser uniformes, e ocasionalmente um elétron terá velocidade suficiente para sair do metal sem voltar. A quantidade mínima de energia que necessária para que um elétron saia da superfície é chamada a função trabalho, e varia de metal para metal. Um revestimento fino do óxido é aplicado a superfície do metal nos tubos de vácuo para diminuir a função trabalho, pois assim é mais fácil para os elétrons deixarem a superfície do óxido.
A lei de Richardson, também chamada de equação de Richardson-Dushmann, relaciona a densidade de corrente emitida com a temperatura:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde 'T' é a temperatura em kelvin, 'W' é a função trabalho, 'k' é a constante de Boltzmann.
A constante de proporcionalidade 'A', conhecida como constante de Richardson, é dada por:
 A m-2 K-2
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde 'm' e 'e' são a massa e a carga do elétron, e 'h' é a constante de Planck.
Devido à função exponencial, a corrente aumenta rapidamente com a temperatura.
O efeito termiônico é de fundamental importância na eletrônica.